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We first give an exposition of the classical approach to Class Field Theory via ideals. In
Section 2, we introduce idèles and look at Class Field Theory in that setting, making sure
to link back to the ideas in Section 1 heavily. We assume the content covered in what is
typically a standard first two courses in Algebraic Number Theory. Likely sufficient is a first
course in Algebraic Number Theory together with a first course in Local Fields.
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1 Ideal Approach to Global Class Field Theory

Throughout this section, L/K shall be a finite extension of number fields. By OK and
OL we shall mean the ring of integers of K and L respectively. Recall that OK and OL
are Dedekind domains and so ideals of these rings admit a unique factorisation into prime
ideals.

Let K be a number field. By a prime p of K, we mean an equivalence class of absolute
values on K. Recall that by Ostrowski’s Theorem, every absolute value | · |p on K is either
a non-archimedean p-adic absolute value or an archimedean absolute value. We may thus
identify the primes of K with prime ideals (henceforth the finite primes) of OK and the
field embeddings K ↪→ C (henceforth the infinite primes). Given a prime p of K, we shall
write Kp for its completion with respect to p (a local field). If p is finite (p - ∞) then we
shall write Op,K for its ring of integers. If p is infinite (p | ∞) and corresponds to a real
embedding we shall say that p is real; if it corresponds to a complex embedding we shall
say that p is complex.

Definition 1.1. Let p /OK be a finite prime and suppose we have the factorisation

pOL = Pe1
1 . . .Peg

g

where Pi /OL are distinct prime ideals and g, ei are positive integers. We say that each Pi

lies over p and write Pi/p. We make the following definitions:

1. We say that g is the decomposition number of p in L/K.

2. We say that ei is the ramification index of Pi in L/K.

3. We say that Pi is unramified in L/K if ei = 1.

4. We say that p is unramified in L/K if ei = 1 for all 1 ≤ i ≤ g.

5. We say that p is totally ramified in L/K if there exists a unique prime q of L lying
over p and its ramification index is equal to [L : K].

6. We define the inertial degree of Pi in L/K, denoted fi, to be fi = [OL/Pi : OK/p].

7. We say that p splits completely if ei = fi = 1 for all 1 ≤ i ≤ g.

Definition 1.2. Let p be an infinite prime of K and let P be any infinite prime of L
extending p, denoted P/p. We define the ramification index to be e(P/p) = [LP : Kp].
If e(P/p) = 1 we say that P/p is unramified. If e(P/p) = 2 we say that P/p is ramified.
For notational conveniences, we shall always set f(P/p) = 1.

Proposition 1.3. Suppose that L/K is Galois and p is a finite prime of K admitting a
factorisation

pOL = Pe1
1 . . .Peg

g

in OL. Then Gal(L/K) acts via transitive permutation on the Pi.

Proof. Fix σ ∈ Gal(L/K) and 1 ≤ i ≤ g. We first claim that σ(Pi) = Pj for some 1 ≤ i ≤ g.
Indeed, σ restricts to a ring automorphism of OL and so we can write σ(Pi) = (σ−1)−1(Pi).
Since the inverse image of a prime ideal is again a prime ideal, we see that σ(Pi) is some
prime ideal of OL. But σ fixes OK and, in particular, p and so p ⊆ σ(Pi). Hence σ(Pi) is a
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prime of OL lying over p. The only such primes are the ones that appear in the factorisation
of pOL and so σ(Pi) = Pj for some 1 ≤ j ≤ g and so σ permutes the Pj.

Fix 1 ≤ i, j ≤ g. We need to show that there exists σ ∈ Gal(L/K) such that σ(Pi) = Pj.
By the Chinese Remainder Theorem, we have that

OL/pOL =

g∏
i=1

OL/Pei
i

and so we can always choose x ∈ OL such that x ∈ Pi but x 6∈ Pn for i 6= n. Note that

NL/K(x) =
∏

σ∈Gal(L/K)

σ(x) ∈ OK ∩Pi = p ⊆ Pj

Now, Pj is a prime ideal and so σ(x) ∈ Pj for some σ ∈ Gal(L/K). But, by construction,
σ(Pi) is the only prime ideal satisfying σ(x) ∈ σ(Pi) so we must have that σ(Pi) = Pj as
desired.

Corollary 1.4. Suppose that L/K is Galois and p is a finite prime of K admitting a
factorisation

pOL = Pe1
1 . . .Peg

g

in OL. Then e1 = · · · = eg, f1 = · · · = fg and efg = [L : K].

Proof. Since the action of Gal(L/K) on the Pi is transitive, it follows immediately that
ei = ej for all 1 ≤ i, j ≤ g. Furthermore, we must have that OL/Pi

∼= OL/Pj and so fi = fj
for all 1 ≤ i, j ≤ g. The last formula follows from the fact that [L : K] = eifi which itself is
a consequence of the multiplicativity of the norm map.

Remark. From now on, when L/K is Galois, we shall write ep and fp for the common
ramification indices and inertial degrees of p and gp for the decomposition number.

Definition 1.5. Suppose that L/K is Galois, p a finite prime of K and P a prime of L
lying over p. We define the decomposition group relative to P to be

Gal(L/K)P = {σ ∈ Gal(L/K) | σ(P) = P }

Lemma 1.6. Suppose that L/K is Galois, p be a finite prime of K and Pi the primes of
of L lying over p. Then |Gal(L/K)P| = epfp.

Proof. Since Gal(L/K) acts transitively on the Pi, it follows that the index of Gal(L/K)P
in Gal(L/K) is gp. But |Gal(L/K)| = [L : K] = gpepfp. The Lemma then follows upon
appealing to Lagrange’s Theorem.

Lemma 1.7. Suppose that L/K is Galois, p a finite prime of K and P a prime of L lying
over p. Then [LP : Kp] = epfp.

Proof. Recall that Op,K and OP,L are discrete valuation rings so they both each have a

unique maximal ideal. We shall refer to these ideals by p̂ and P̂ respectively. Furthermore,
Op,K and OP,L are both Dedekind domains so we have the factorisation

p̂OP,L = P̂e
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for some integer e > 0. Let f be the inertial degree of P̂ in LP/Kp. Then [LP : Kp] = ef .
We first claim that f = fp. Indeed, recall that [OP,L : Op,K ] = [OL : OK ] whence the claim
follows.

Now let P1, . . . ,Pj be the other primes of L lying over p. Then

p̂OP,L = (pOp,K)OP,L = (pOL)OP,L = Pep

(
n∏
i=1

P
ep
i

)
OP,L = PepOP,L = P̂ep

and so e = ep as desired.

Proposition 1.8. Suppose that L/K is Galois, p a finite prime of K and P a prime of L
lying over p. Then LP/Kp is Galois and

Gal(L/K)P ∼= Gal(LP/Kp)

Proof. Let σ ∈ Gal(L/K)P. Then σ acts as an isometry of the absolute value | · |P of L and,
in particular, it preserves Cauchy sequences in L. Thus σ extends to a Kp-automorphism of
LP. This induces an injection Gal(L/K)P ↪→ Aut(LP/Kp).

Conversely, fix σ ∈ Gal(LP/Kp). Then σ|L is clearly a K-automorphism of L. Further-
more, this restriction mapping is injective since K is dense in Kp and L is dense in LP.
Since σ fixes | · |P, it follows that σL(P) = P and so we get an injection Aut(LP/Kp). This
easily yields an isomorphism Gal(L/K)P ∼= Aut(LP/Kp).

The Lemmata 1.6 and 1.7 then imply that LP/Kp is Galois and so Gal(L/K)P ∼=
Gal(LP/Kp).

Given a finite prime p of K and P a prime of L lying over p. Let FP = OP,L/P and
Fp = Op,K/p. Then Gal(LP/Kp) surjects onto Gal(FP/Fp).

Definition 1.9. Suppose that L/K is Galois, p a finite prime of K and P a prime of L
lying over p. We define the inertial group relative to P, denoted, IP, to be the subgroup
of elements of Gal(L/K)P that become trivial in Gal(FP/Fp).

Definition 1.10. Suppose that L/K is Galois, p a finite unramified prime of K and P a
prime of L lying over p. We define the Frobenius element of Gal(L/K)P to be the unique
element of Gal(L/K)P that acts as Frobenius on FP/Fp and is denoted by(

L/K

P

)
In other words, it is the unique element of Gal(L/K)P that maps to the Frobenius auto-
morphism (x 7→ x|Fp|).

Proposition 1.11. Suppose that L/K is Galois, p a finite prime of K and P1, . . . ,Pg the
primes of L lying over p. Let i 6= j and σ ∈ Gal(L/K) such that σ(Pi) = Pj. Then

Gal(L/K)Pj
= σGal(L/K)Pi

σ−1

If furthermore p is unramified then(
L/K

Pj

)
= σ

(
L/K

Pi

)
σ−1
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Proof. First let x ∈ σGal(L/K)Pi
σ−1 so that x = στσ−1 for some τ ∈ Gal(L/K)Pi

. Then

x(Pj) = στσ−1(Pj) = στ(Pi) = σ(Pj) = Pj

so x ∈ Gal(L/K)Pj
. The converse follows via symmetry.

Now, let τ ∈ Gal(L/K)Pi
be the Frobenius element relative to Pi and q = |Fp|. Then

for all x ∈ OL we have τ(x) ≡ xq (mod Pi). In particular, we have τ(σ−1(x)) ≡ σ−1(x)q

(mod Pi). Left-composing by σ yields στσ−1(x) ≡ xq (mod Pj) as desired.

Corollary 1.12. Suppose that L/K is abelian, p a finite unramified prime of K and
P1, . . . ,Pg the primes of L lying over p. Then(

L/K

Pi

)
=

(
L/K

Pj

)
for all i 6= j.

Definition 1.13. Suppose that L/K is abelian and p a finite unramified prime of K and
P a prime of L lying over p. Then we define the Frobenius element (or Artin symbol)
relative to p to be the Frobenius element relative to P and denote it(

L/K

p

)
Proposition 1.14. Suppose that L/K is abelian and p a finite prime of K and P a prime
of L lying over p. Then ((L/K)/p) = 1 if and only if p splits completely in L.

Let MK be the set of all primes of K, M∞
K the subset of infinite primes

Proof. We have that(
L/K

p

)
= 1 ⇐⇒ the identity is the unique element of Gal(L/K)p

acting as Frobenius on FP/Fp

⇐⇒ [FP : Fp] = 1

⇐⇒ fp = 1

⇐⇒ p splits completely in L

Definition 1.15. Suppose that L/K is abelian and let S be the collection of all infinite
primes of K and the finite primes of K that ramify in L. Let ISK be the subgroup of all
fractional ideals of K that do not contain a prime of S in their factorisation. We define
the Artin map to be the unique homomorphism ϕSL/K : ISK → Gal(L/K) that extends the

Artin symbol. In other words, let a =
∏n

i=1 p
ai
i for some finite unramified primes pi of K

and integers ai. Then the Artin map is given by(
L/K

·

)
: ISK → Gal(L/K)

a 7→
n∏
i=1

(
L/K

pi

)ai
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Remark. Note that the Artin map is well-defined as L/K is abelian. Furthermore, S is
finite since there are only finite many primes of K that ramify in L. This follows from
the fact that the primes of K that ramify in L are exactly those that divide the relative
discriminant of L/K. For a proof of this in the case of K/Q, see

Definition 1.16. We define the relative norm map from L to K to be the unique homo-
morphism

NL/K(·) : IL → IK

satisfying NL/K(P) = pf(P/p) where P is a finite prime of L lying over the finite prime p of
K which is then extended multiplicatively.

Proposition 1.17. Suppose that L/K is abelian and K ′ is an intermediate extension of
L/K. Let S be a set of the finite primes of K containing all those that ramify in L and also
those of K ′ lying over the former primes. Then the diagram

ISK′ Gal(L/K ′)

ISK Gal(L/K)

ϕS
L/K′

NK′/K(·)
ϕS
L/K

commutes.

Proof. By multiplicativity, it suffices to prove the Proposition for prime ideals in I ′SK . Fix a
finite prime p′ of K ′ lying over a prime p of K not in S. Then NK′/K(p′) = pf(p′/p). We thus
need to show that

ϕSL/K′(p
′) = ϕSL/K(pf(p′/p))

In other words, we need to show that(
L/K ′

P

)
=

(
L/K

P

)f(p′/p)

for all primes P lying over p. But this follows immediately from the fact that the Frobenius
element in Gal(FP/Fp′) is the f(p′/p)-power of the Frobenius element in Gal(FP/Fp).

Corollary 1.18. Suppose that L/K is abelian and S a collection of finite primes of K
containing those that ramify in L. Then

NL/K(ISL) ⊆ ker(ϕSL/K)

Proof. The Corollary follows immediately upon taking K ′ = L in the commutative diagram
in Proposition 1.17.

Definition 1.19. Let S be the set of all primes of K. We define a modulus of K to be a
function m : S → Z such that

1. m(p) ≥ 0 for all p ∈ S and m(p) = 0 for all but finitely many finite p.

2. m(p) = 0 or 1 for all real primes p.

3. m(p) = 0 for all complex primes p.
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We shall write such a modulus as a formal product

m =
∏
p∈S

pm(p)

Moreover, we can write m = m∞m0 where m∞ is the real infinite part of m and m0 is the
finite part of m which can be identified with an integral ideal of OK .

Given two moduli m and n, we say that m divides n if m(p) ≤ n(p) for all p ∈ S.

Definition 1.20. Let m be a modulus of K and α ∈ K×. We say that α is multiplicatively
congruent to 1 modulo m, denoted α ≡ 1 (mod×m), if

1. α ∈ 1 + pm(p)Op,K for all finite primes p such that m(p) > 0.

2. |α|p > 0 for all real primes p such that m(p) > 0.

Definition 1.21. Let m be a modulus of K. Let ImK be the collection of fractional ideals of
K prime to m, Pm

K the subgroup of ImK consisting of principal ideals and define

Pm,1
K = { (α) ∈ Pm

K | α ≡ 1 (mod×m) }

We define the ray class group modulo m to be the quotient Cm
K = ImK/P

m,1
K .

Theorem 1.22 (Weak Approximation Theorem). Let K be a valued field and | · |1, . . . , | · |n a
family of pair-wise non-equivalent, non-trivial absolute values on K. Given any a1, . . . , a1 ∈
K and ε > 0, there exists b ∈ K such that |ai − b|i < ε for all 1 ≤ i ≤ n.

Proof. See appendix of [4].

Lemma 1.23. Let m be a modulus of K and CK the ideal class group of K. Then any ideal
class in CK admits a representative that is prime to m.

Proof. Fix an ideal class [I] ∈ CK and let its unique factorisation be I =
∏

p p
ep . If I is

prime to m then we are done. If not then we can write I = aa′ with a prime to a′ =
∏

p|m pep .

Choosing a uniformiser πp for each such prime, denote α =
∏

p|m π
−ep
p . Then [αa] = [a] and

(αa, a) = 1.

Theorem 1.24. Let m be a modulus of K and CK the ideal class group of K. Let Km =
{α ∈ K× | (α) ∈ Pm

K } and similarly for Km,1. Then we have an exact sequence

1 O×K/(O
×
K ∩Km,1) Km/Km,1 Cm

K CK 1

Furthermore, Km/Km,1 ∼= {±1 }|m∞| × (OK/m0)×. In particular, Cm
K is finite.

Proof. Denote by ι the inclusion Km,1 ↪→ Km and φ : Km → ImK the map given by α 7→ (α).
Then we have a commutative diagram

Km,1 Km Km/Km,1 1

1 ImK ImK 1

ι

φ◦ι φ

to which we would like to apply the Snake Lemma. Firstly, it is clear that ker(ι) = 1. We
then have that ker(φ ◦ f) = O×K ∩ Km,1. Furthermore, ker(φ) = O×K . Now, coker(f) =
Km/Km,1 from which we see that coker(φ ◦ f) = Cm

K . Finally, coker(φ) = CK by Lemma
1.23. Thus the Snake Lemma implies that we have an exact sequence
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1 O×K ∩Km,1 O×K Km/Km,1 Cm
K CK 1

The exact sequence in the Theorem then follows immediately.
To prove the isomorphism, note that, by the Chinese Remainder Theorem, it suffices to

show that

Km/Km,1 ∼= {±1 }|m∞| ×
∏
p|m0

(OK/pm(p))×

We define a homomorphism

ψ : Km → {±1 }|m∞| ×
∏
p|m0

(OK/pm(p))×

where α ∈ Km is mapped to α/|α|p for real primes p and to the quotient OK/pm(p) for the
finite primes p. The latter is clearly well-defined since we can always choose a, b ∈ OK such
that α = a/b and both (a) and (b) prime to m and to each other. Moreover, the image of
α is contained in the unit group since (α) is coprime to m. The surjectivity of ψ follows
immediately by weak approximation. Now ψ(α) = 1 if and only if α ≡ 1 (mod×m) if and
only if α ∈ Km,1 and so ker(ψ) = Km,1 whence the Theorem follows.

Definition 1.25. Let m be a modulus for K. A congruence subgroup for m is a subgroup
C of ImK that contains Pm

K .

Definition 1.26. Let L/K be a finite abelian extension of local fields. We define the
conductor of L/K, denoted f(L/K) in the following way: If K ∼= R and L ∼= C then we
write f(L/K) =∞, else we write f(L/K) = 1. If K is non-archimedean with unique maximal
ideal p /Op,K then we write f(L/K) = pf where f = min {n | 1 + pn ⊆ NL/K(L×) }.

If L/K is a finite abelian extension of number fields then we define

f(L/K) =
∏
p

f(LP/Kp)

where P is any prime of L lying above p.

Proposition 1.27. Suppose that L/K is abelian. Then f(L/K) is divisible by exactly the
primes of K that ramify in L.

Proof. See Propositions 11.10 and 11.11 in [10].

Theorem 1.28 (Class Field Theory). Let m be a modulus for K. Then

1. (Existence) There exists an abelian extension of K, denoted K(m) and called the ray
class field of K modulo m, such that Cm

K
∼= Gal(K(m)/K) via the Artin map.

2. (Completeness) Given a finite abelian extension L/K, we have L ⊆ K(m) if and only
if f(L/K) divides m. In particular, every finite abelian extension of K is contained in
a ray class field of K for some modulus m.

3. (Artin Recpirocity) For every intermediate field L of K(m)/K, the Artin map induces
an isomorphism

ϕm
L/K :

ImK
Pm,1
K NL/K(ImL )

→ Gal(L/K)

Moreover, the Artin map induces an order-preserving one-to-one correspondence be-
tween the abelian extensions L/K with f(L/K) dividing m and the congruence sub-
groups for m.
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Proof. See [9].

Example 1.29. Let K be a number field and CK its class group. Consider the trivial
modulus 1 of K. Then K(1) is referred to as the Hilbert class field of K and satisfies
Gal(L/K) ∼= CK . Furthermore, it is an unramified extension since completeness implies
that f(K(1)/K) is trivial. Completeness also implies that every finite unramified abelian
extension must be contained in K(1); indeed, the conductor of any such extension must be
trivial and thus divides the trivial modulus 1.

Were there to exist an infinite unramified abelian extension of K, it would necessar-
ily contain a finite unramified abelian extension of K not contained in K(1) which is a
contradiction. K(1) is thus the maximal unramified abelian extension of K.

2 Idèlic Approach to Global Class Field Theory

We continue using the notation established from the previous section. We shall assume
that L/K is an arbitrary extension of number fields. Furthermore, write MK for the collec-
tion of all primes of a number field K.

Recall that a profinite group is a topological group that is obtained as the inverse
limit of a collection of finite groups, each of which is given the discrete topology. Given an
arbitrary group G, we can form its profinite completion Ĝ by taking the inverse limit of
the inverse system given by the groups G/H where H is a finite-index open subgroup of G
and the connection homomorphisms are given by the natural maps induced by the inclusions
of the subgroups. Ĝ is uniquely characteristed by the following universal property: if H is
any profinite group and φ : G → H is a homomorphism then φ factors uniquely through
the natural map G→ Ĝ. Moreover, the latter map sends G to a dense subspace of Ĝ. This
mapping is injective precisely when the intersection of all finite-index normal subgroups of
G is trivial.

Definition 2.1. Suppose that L/K is an infinite Galois extension. We define the Galois
group of L/K to be

Gal(L/K) = lim←−
K′/K finite Galois

Gal(K ′/K)

The topology on Gal(L/K) is called the Krull topology and has a basis consisting of the
finite-index normal subgroups.

Theorem 2.2 (Galois Theory). Suppose that L/K is a Galois extension. Given a closed
normal subgroup H ⊆ Gal(L/K), let LH represent the fixed field of H. Let K ′ be an
intermediate field of L/K. Then the maps K ′ → Gal(L/K ′) and H → LH are mutually-
inverse, inclusion-reversing bijections.

Proof. See [3].

Theorem 2.3 (Product Formula). Let x ∈ K×. Then∏
p∈MK

|x|p = 1

Proof. Let xOK =
∏

p∈MK
pep be the prime factorisation of the ideal xOK . Since only

finitely many of the ep are non-zero, it follows that only finitely many terms of the product
are not equal to 1. In particular, the product taken over the finite primes is equal to
N(p)−ep = N(xOK)−1 = |NK/Q(xOK)|−1. On the other hand, the product taken over the
infinite primes is equal to |NK/Q(xOK)| whence the Theorem follows.
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Definition 2.4. Let {Gi }i∈I a family of locally compact groups and Ki ⊆ Gi an open
compact subgroup for each i ∈ S where S ⊆ I is finite. We define the restricted product
of the Gi with respect to the Ki to be

∏∐Ki

i∈I\S

Gi =

{
(gi) ∈

∏
i∈I

Gi

∣∣∣∣∣ gi ∈ Ki for all but finitely many i ∈ I\S

}

We equip the restricted product with the topology generated by the basis of open sets{∏
i∈I

Ai

∣∣∣∣∣ Ai is open in Gi and Ai = Ki for all but finitely many i ∈ I

}

Proposition 2.5. Let {Gi }i∈I a family of locally compact groups and Ki ⊆ Gi an open
compact subgroup for each i ∈ S where S ⊆ I is finite. Then the restricted product of the
Gi with respect to the Ki is locally compact.

Proof. Let S ′ be any set containing S. Consider the open set

GS′ =
∏
i∈S′

Gi ×
∏
i 6∈S′

Ki

Then GS′ is locally compact in the product topology. Indeed, the S ′-part of the product is
locally compact since it is the product of finitely many locally compact spaces. Furthermore,
the second part of the product is compact by Tychonoff’s Theorem and so, in particular, it
is also locally compact. But the restricted product topology on GS′ is the same as the one
induced by the product topology and so GS′ is locally compact in the restricted product
topology. Now, for all x in the restricted product, there exists an S ′ such that x ∈ GS′ and
so the restricted product is locally compact.

Definition 2.6. Let S ⊆ MK be the set of all infinite primes of K. We define the idèle
group of K to be

IK =
∏∐O×p,K

p∈MK\S

K×p

Moreover, we define the 1-idèles to be the subgroup

I1
K =

∏
p-∞

O×p,K ×
∏
p|∞

K×p

Proposition 2.7. K× embeds as a discrete subgroup of IK.

Proof. K× is clearly a subgroup of IK so it suffices show that K× inherits the discrete
topology from IK . Now, multiplication is a homeomorphism of IK so it suffices to show
that there exists a neighbourhood of 1 containing no other element of K×. Consider the
neighbourhood of 1

U =
∏
p-∞

O×p,K ×
∏
p|∞

{x ∈ Kp | |x− 1|p < 1 }

Now suppose that 1 6= α ∈ K×∩U . Then α ∈ OK which clearly implies that 0 6= α−1 ∈ OK .
Then |α − 1|p < 1 for all p|∞. But this contradicts the product formula so we must have
that α = 1.
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Definition 2.8. We define the idèle class group of K to be the quotient

CK = IK/K×

Remark. CK is not compact. Indeed, consider the so-called volume function V (x) : IK → R
given by (x) 7→

∏
p∈MK

|xp|p. This is trivial on K× by the product formula and so induces a
continuous function on the idèle class group. But this induced function is clearly unbounded
and so CK cannot be compact.

Definition 2.9. Let (a) ∈ IK be an idèle. We define the ideal associated to (a) to be

a =
∏
p-∞

pvp(ap)

If we equip IK with the discrete topology then this assignment gives a continuous surjective
homomorphism I : IK → IK , referred to as the idealifier, with kernel exactly the 1-idèles.

Proposition 2.10. Let CK be the ideal class group of K. Then

CK/I1
K
∼= CK

Proof. Let I : IK → IK be the idealifier and g : IK → CK the homomorphism sending each
ideal of IK to its ideal class in CK . Then g ◦ I maps IK onto CK and its kernel is given by

{ (x) ∈ IK | I((x)) is principal } = { (x) ∈ IK | I((x)) ∈ I(K×) }
= { (x) ∈ IK | (x) ∈ K× ker(I) }
= K×I1

K

whence the Proposition follows.

Corollary 2.11. Every open subgroup of CK has finite index.

Proof. Fix an open subgroup H of CK and let G be the subgroup of IK that is mapped to
H under the canonical surjection π : IK → CK . Then G is open by definition and contains
an open neighbourhood of 1 of the form

Uε =
∏
p-∞

O×p,K ×
∏
p|∞

{xp | |xp − 1|p < ε }

But then G also contains the subgroup generated by Uε which is exactly the group of 1-
idèles I1

K . Hence CK/H = IK/GK× ⊆ IK/I1
KK

× = CK . The Corollary then follows by the
finiteness of the class number.

Proposition 2.12. Let m be a modulus for K and define the sets

U
m(p)
K =


O×p,K if p -∞,m(p) = 0

1 + pm(p)Op,K if p -∞,m(p) > 0
K×p if p | ∞,m(p) = 0
R×>0 if p is real,m(p) > 0

Denote Um
K =

∏
p∈MK

U
m(p)
K . Then

1. Um
K is an open subgroup of IK.

11



2. Every open subgroup of IK contains Um
K for some modulus m.

3. CK/U
m
K
∼= Cm

K.

Proof. The first two parts are immediate from the definition of the topology on IK . In
particular, Um

K is an element of the basis.
To prove the third part, first define

ImK = { (x) ∈ IK | xp ∈ Um(p)
K for all p -∞ such that p|m }

Note that Um
K is actually a subgroup of ImK . We first observe that Km,1 = K× ∩ ImK . We

next observe that I|ImK surjects onto ImK . We now would like to apply the Kernel-Cokernel

Lemma (see Appendix) to the pair of homomorphisms Km,1 ι
↪−→ ImK

I−→ ImK . We note that
ker(I) = Um

K , coker(ι) = ImK/Km,1, coker(I ◦ ι) = ImK/P
m,1
K = Cm

K and coker(I) = 1 so we have
an exact sequence

Um
K ImK/Km,1 Cm

K 1

From which we may read off the isomorphism ImK/(Um
KK

m,1) ∼= Cm
K . The Proposition will fol-

low upon showing that ImK/Km,1 ∼= IK/K×. Consider the canonical mapping ImK → IK/K×.
The kernel of this mapping is ImK∩K× = Km,1 and so we get an injection ImK/Km,1 ↪→ IK/K×.
The surjectivity of this map follows immediately from weak approximation.

Definition 2.13. We define the idèle norm NL/K(·) to be the map

NL/K(·) : IL → IK
that sends an idèle (x) ∈ IL to the idèle (y) ∈ IK whose pth component is

∏
P/p NLP/Kp(xP).

Proposition 2.14. We have a commutative diagram

L× IL IL

K× IK IK

NL/K(·) NL/K(·)

J

NL/K(·) NL/K(·)

J

Furthermore, NL/K(·) descends to a homomorphism on CL and we have a commutative
diagram

CL CL

CK CL

NL/K(·) NL/K(·)

Proof. Recall, from the elementary theory of local fields [5], that we have a canonical iso-
morphism

L⊗K Kp =
∏
P/p

LP

for any prime p of K. But the norm map is invariant under tensors so we have that
NL/K(α) =

∏
P/p NLP/Kp(α) for all α ∈ L. We thus have the commutativity of the left-hand

square of the first diagram and the right-hand square follows easily. The fact that NL/K(·)
descends to a homomorphism on CL follows immediately from a standard quotient group
argument. The second commutative diagram now follows easily via quotienting out by the
image of L× on every object in the first diagram.

12



Theorem 2.15 (Class Field Theory). Let Kab be the maximal abelian extension of K. Then
there is a continuous surjective homomorphism called the Artin map

[·, Kab/K] : IK → Gal(Kab/K)

For an intermediate abelian field L of Kab/K write [·, L/K] = [·, Kab/K]|L. The Artin map
satisfies the following properties:

1. (Artin Reciprocity) [K×, Kab/K] = 1 and so the Artin map descends to a homomor-
phism CK → Gal(Kab/K) which induces an isomorphism

[·, Kab/K] : ĈK → Gal(Kab/K)

Furthermore, for every finite abelian extension L/K, we have an isomorphism

[·, L/K] : CK/NL/K(CL)→ Gal(L/K)

2. (Existence) For every finite-index open subgroup N of CK, there exists a unique abelian
extension L/K such that N = NL/K(CL). In particular, for every modulus m of K, the
ray class field K(m) is the unique abelian extension such that NK(m)/K(CK(m)) = Um

K.

3. (Compatibility) Let L/K be a finite abelian extension and x ∈ IK be an idèle such that
I(x) is prime to all finite primes of K that ramify in L. Then

[x, L/K] =

(
L/K

I(x)

)
4. (Norm Restriction) Let L/K be an extension of number fields. Then

[x, Lab/L] = [NL/K(x), Kab/K]

Proof. See [7].

Corollary 2.16. There exists a one-to-one inclusion reversing correspondence between the
finite abelian extension of K and the finite-index open subgroups of CK. Furthermore, given
finite abelian extensions L1 and L2 of K, this bijection satisfies

1. NL1L2/K(CL1L2) = NL1/K(CL1) ∩ NL2/K(CL2)

2. N(L1∩L2)/K(CL1∩L2) = NL1/K(CL1) · NL2/K(CL2)

Remark. The homomorphism CK → Gal(Kab/K) is almost an isomorphism of topological
groups in the following sense: it is a topological homeomorphism but not necessarily a
group isomorphism. It cannot be a group isomorphism as Gal(Kab/K) is profinite whereas
CK is not. Indeed, recall that a topological group is profinite if and only if it is compact,
Hausdorff and totally disconnected. But by an earlier remark, CK is not compact. Hence
this homomorphism only becomes an isomorphism once we pass to the profinite completion
of CK .

Definition 2.17. We define a Hecke character of CK to be a continuous homomorphism

ψ : CK → C×

We say that a Hecke character is of finite order if ψm = 1 for some positive integer m.
Furthermore, we define a 1-dimensional Galois representation of K to be a continuous
homomorphism

χ : Gal(Kab/K)→ C×

13



Theorem 2.18. There is a one-to-one correspondence between Hecke characters of CK of
finite order and 1-dimensional Galois representations of K.

Proof. Fix a 1-dimensional Galois representation χ and let ϕK be the idèlic Artin map. We
observe that χ ◦ ϕK defines a Hecke character of CK .

We first claim that χ has finite image. Indeed. let U ⊆ C× be an open neighbourhood
containing no non-trivial subgroup of C×. By continuity, χ−1(U) is open and contains the
identity automorphism and therefore contains an open subgroup H of Gal(Kab/K) since
the latter is profinite. Pulling H forward along χ, we get an open subgroup of U which,
by construction, must be trivial. χ is thus trivial on H and so descends to a continuous
homomorphism χ : Gal(Kab/K)/H → C× whose image coincides with the image of χ. Now,
Gal(Kab/K) is compact since it is profinite and open subgroups of compact groups have
finite index and so the image of χ must be finite.

From the claim it follows that χ factors through the Galois group of a finite abelian
extension L/K so we may assume that χ is a continuous homomorphism χ : Gal(L/K) →
C×. By Class Field Theory, χ◦ϕK then factors through G = CK/NL/K(CL) which is a Hecke
character of finite order. We thus have an injection of the character group of Gal(L/K) into
the character group of G. Recall that the character group of a finite abelian group H is
isomorphic to H. This, combined with the fact that G ∼= Gal(L/K) establishes that this
injection is in fact a bijection as required.

3 Appendix

Lemma 3.1 (Kernel-Cokernel Lemma). Let A,B and C be abelian groups and f : A → B
and g : B → C homomorphisms. Then we have an exact sequence

0 ker(f) ker(g ◦ f) ker(g) coker(f) coker(g ◦ f) coker(g) 0
f

Proof. This follows immediately upon applying the Snake Lemma to the following diagram
with exact rows

A B coker(f) 0

0 C C 0

f

g◦f g

id
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